MADGiC: a model-based approach for identifying driver genes in cancer

نویسندگان

  • Keegan D. Korthauer
  • Christina Kendziorski
چکیده

MOTIVATION Identifying and prioritizing somatic mutations is an important and challenging area of cancer research that can provide new insights into gene function as well as new targets for drug development. Most methods for prioritizing mutations rely primarily on frequency-based criteria, where a gene is identified as having a driver mutation if it is altered in significantly more samples than expected according to a background model. Although useful, frequency-based methods are limited in that all mutations are treated equally. It is well known, however, that some mutations have no functional consequence, while others may have a major deleterious impact. The spatial pattern of mutations within a gene provides further insight into their functional consequence. Properly accounting for these factors improves both the power and accuracy of inference. Also important is an accurate background model. RESULTS Here, we develop a Model-based Approach for identifying Driver Genes in Cancer (termed MADGiC) that incorporates both frequency and functional impact criteria and accommodates a number of factors to improve the background model. Simulation studies demonstrate advantages of the approach, including a substantial increase in power over competing methods. Further advantages are illustrated in an analysis of ovarian and lung cancer data from The Cancer Genome Atlas (TCGA) project.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

An Integrated Approach to Uncover Driver Genes in Breast Cancer Methylation Genomes

BACKGROUND Cancer cells typically exhibit large-scale aberrant methylation of gene promoters. Some of the genes with promoter methylation alterations play "driver" roles in tumorigenesis, whereas others are only "passengers". RESULTS Based on the assumption that promoter methylation alteration of a driver gene may lead to expression alternation of a set of genes associated with cancer pathway...

متن کامل

Identification of Constrained Cancer Driver Genes Based on Mutation Timing

Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is increasing evidence that many additional drive...

متن کامل

Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach

Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...

متن کامل

DGPathinter: a novel model for identifying driver genes via knowledge-driven matrix factorization with prior knowledge from interactome and pathways

Cataloging mutated driver genes that confer a selective growth advantage for tumor cells from sporadic passenger mutations is a critical problem in cancer genomic research. Previous studies have reported that some driver genes are not highly frequently mutated and cannot be tested as statistically significant, which complicates the identification of driver genes. To address this issue, some exi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015